skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Shuaizhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG-16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform them of ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands. 
    more » « less
  2. null (Ed.)
    Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First, the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands. 
    more » « less